So, if you’re like me and you watched Brian Greene’s TED talk on string theory, you probably wonder how experiments on little strings vibrating in curled-up dimensions will affect our daily lives. In fact, there are plenty of ways, detailed in thisĀ list of how physics will change the future.

The first time I heard about the useful application of quantum mechanics was in the field of cryptography. As we store more and more of our personal information online, it’s that much more important for this data to remain well-encrypted. The race between code makers and code breakers has been close through the ages, but the cryptographers may finally win with the help of photons. Once quantum key distribution becomes the norm, it will be impossible for hackers to get into a system without announcing their presence, thereby defeating their purpose.

Quantum dots latched on to cancer cells

Cancer cells might not be able to go undetected anymore, either. Quantum “dots,” tiny semiconductor crystals, glow when exposed to ultraviolet radiation and, when coated with the right substance, latch on to cancer cells. Doctors can then pinpoint exactly which cells to target with treatment while leaving the rest of the healthy cells alone.

Meanwhile, in Brazil, scientists are using quantum physics to replicate turbulence in the lab so that someday we may be able to predict the chaotic swirls in gas and liquids. Flights will become smoother and weather reports more reliable.

But then again, if you want to just skip the security lines altogether you can always invest in transportation research. Scientists have been able to scan molecules and reconstruct them elsewhere…but don’t recycle your 3 oz liquid bottles yet: these aren’t exact copies of the molecules, they are twins. In the process of teleportation the original is destroyed. Sound like a good plot line? It’s already been done; beautifully, in my opinion, in 2006’s The Prestige (it’s a great movie so if you don’t want the ending ruined don’t watch the following clip):